

THE BEAUTIFUL FRIENDSHIP OF IMS AND FTICR MASS SPECTROMETRY FOR COMPLEX MIXTURES ANALYSIS

Carlos Afonso

Context

Carlos AFONSO, Brice BOUYSSIERE, Ryan RODGERS, Pierre GIUSTI

Highly Complex organic mixtures

- Complex mixture analysis
 - Requires high peak capacity
 - Post-ionization separation
 - 1 dimension: ultra-high resolution
 - 2 dimensions: ion mobility coupling

WATERS SYNAPT G2

- 12 T Solarix XR
 - Highly Complex organic mixtures
 - Energy
 - Environment
 - Metabolomics

CINIS

Complex mixture analysis and resolving power

Johann Le Maitre Crude oil analysis

Q

Data vizualization

m/z 310.25293 Molecular Formula: C₂₂H₃₂N⁺

Many structural formulas

Structural information with IMS

- separation based on size and shape
 - drift time (1-30 ms)
 - access to collision cross section (CCS)
 - intrinsic property of the ion
 - predictable
- IMS-MS coupling
 - 2D separation
 - information on isomers
 - coupling with TOF (acquisition in µs range)

$$\frac{\Omega_{\text{exp}}}{z} = \left(\frac{3}{16N}\right) \left(\frac{2\pi}{\mu kT}\right)^{\frac{1}{2}} \left(\frac{e}{K}\right)$$

Edward Mack, Jr, *J. Am. Chem. Soc.* 1925, 47, 2468

- A very simple instrument
 - Uniform field
 - Atmospheric pressure
 - Cortana discharge ionization

P. Weis et al./Int. J. Mass Spectrom. 216 (2002) 59–73

Home land security

Portable IMS

11

McKnight, Lee G., McAfee, Kenneth B., Jr. Sipler, D. P. Low-field drift velocities and reactions of nitrogen ions in nitrogen, Phys. Rev. 1067, 164, 62-70

- IMS separation
 - <100 ms
- Fast mass analyzer
 - TOF
- First IM-MS
 - McKnight 1967
 - Ion/molecules reactions
 - Reintroduced in 1998-1999
 - David Clemmer

Cherokee S. Hoaglund, Stephen J. Valentine, C. Ray Sporleder, James P. Reilly, and David E. Clemmer Anal. Chem. 1998, 70, 2236-2242

Ion Mobility-Mass spectrometry

• Ion coordinats = m/z + drift time + intensity

2D Map

Woods A, Ugarov M, Egan T, Koomen J, Gillig KJ, Fuhrer K, Gonin M, Schultz JA. Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. *Analytical Chemistry* 2004; 76: 2187–2195.

Complex mixture with TOF? Nitrogen speciation in Oil

- isobaric interferences <u>not</u> resolvable (C₃ vs. SH₄) with the TOF but selected species can be investigated regarding IMS-profile
- UHRMS required for full molecular formula specification and proof for interferences

UNIVERSITE DE **ROUEN**

Application nitrogen speciation on a VGO

M. Farenc, Y. E. Corilo, P. M. Lalli, E. Riches, R. P. Rodgers, C. Afonso and P. Giusti, *Energy Fuels*, 2016, **30**, 8896-8903.

CMIS

IMS profile

 $FWHM = 0.0572t_{D} - 0.0381$

Prediction of peak width

Other way to obtain information on isomeric content?

Farenc, M., Paupy, B., Marceau, S. et al. J. Am. Soc. Mass Spectrom. (2017) 28: 2476. https://doi.org/10.1007/s13361-017-1749-1

• Continuum of isomeric species

Faraday Discussion

Complex Strixlures Gniy

Challenges in analysis of complex natural mixtures

Faraday Discussion

Challenges in Analysis of Complex Natural Mixtures Faraday Discussion May 13, 2019 May 15, 2019

430.

CNIS

Molecules refractory to the HDN process Hydrodenitrogenation of VGO

DBE = c - h/2 + n/2 + 1(for $C_c H_h N_n O_o S_s$)

> DBE 7-8-9 most refractory to HDN

 significant shift in peak apex and FWHM also for (-)-ESI

CCS based structure prediction

hexadecylbenzene 124.7 Å²

- minimization using MMFF94 Force Field
- CCS determination of all structures using Mobcal

Lowest energy structure

71.9 kJ/mol 119.6 Å²

Simulation and modeling of CCS for structural elucidation...

Highest energy structure

Structure prediction based on IMS-MS

Towards unsupervised polyaromatic hydrocarbons structural assignment from SA-TIMS-FTMS data

CINIS

Previous Work on CCS based structure prediction

Standard compounds	Suggested structures	Experimental CCS values (Ų)	Theoretical CCS values (Ų)	$\Delta \Omega$ (exp theo.)%	
1,4-didecylnaphthalene	C ₁₀ H ₂₁	155.86	199.50	-28.0	
1,6-diheptylpyrene	C ₇ H ₁₅ C ₇ H ₁₅	148.04	174.68	-18.0	
9,10-diheptylanthracene	C ₇ H ₁₅	139.52	164.67	-18.0	
3-octylperylene	C ₈ H ₁₇	128.68	147.48	-14.6	
1,4-didecylbenzene	C ₁₀ H ₂₁	147.96	186.47	-26.0	

DFT using B3LYP/6-31G(d) base set

A. Ahmed, Y. Cho, K. Giles, E. Riches, J. W. Lee, H. I. Kim, C. H. Choi and S. Kim, *Anal. Chem.*, 2014, **86**, 3300-3307.

CMIS

How floppy molecules fly in the IMS cell?

Name	1,4bis(2- ethylhexyl)ben zene	1,4- dioctylbenz ene	hexadecyl benzene	Average error (%)	
ExpCCS _{N2}	194.9	204.3	200.5		
1% Lowest energy		201.4	207.5 (-	0.47	
(^{calc} CCS)	191.8 (1.59%)	(1.42%)	3.49%)	2.17	
25% Lowest	193 3 (0 82%)	201.5	203.9 (-	1 29	
energy (^{calc} CCS)		(1.37%)	1.69%)		
50% Lowest	194.0 (0.46%)	200.5	201.9 (-	1.01	
energy (carcCCS)		(1.86%)	0.70%)		
Average all	193 3 (0 82%)	197.6	198.7	1 66	
calcCCS _{N2}	100.0 (0.02 /0)	(3.28%)	(0.89%)	1.00	

HDN VGO

Structural Characterization of Acids in Petroleum by IMS-MS ESI(-)

Comparison with standard compounds

Cassini-Huygens Mission

PhD of Julien Maillard

- 95 % N₂, 5 % CH₄
- Photochemistry reactions due to solar UV photons and Saturn charged particles (Khare et *al*. 1981)
 - Thick brown smog
 - Prebiotic chemistry

Earth. Planet. Sci. Lett., 2018, 495, 185-191

PAMPRE experiment

Tholins

PAMPRE experiment (Szopa et al 2006) (Production d'Aérosols en Microgravité par Plasma Reactifs)

UNIVERSITE DE **ROUEN** **Highly complex organic matter**

How to analyse the non soluble fraction ?

Analysis with a Laser desorption ionisation source (LDI) coupled to a 12T FTICR

* Barrere. C., et *al.* (2012). "Solvent-based and solvent-free characterization of low solubility and low molecular weight polyamides by mass spectrometry: a complementary approach." Rapid Commun Mass Spectrom 26(11): 1347-1354.

Optimization for the best performances

Molecular mapping: soluble and non soluble fractions

aboratoire

ra

Maillard, J.; Carrasco, N.; Schmitz-Afonso, I.; Gautier, T.; Afonso, C., Comparison of soluble and insoluble organic matter in analogues of Titan's aerosols. *Earth and Planetary Science Letters* **2018**, 495, 185, 191.

NH

- Owing to the high complexity IMS-TOF analysis is very challenging and limited to low masses
- IMS with FTICR?

UNIVERSITE

- Drift tube IMS or TWIMS: ms time scale
- FTICR second time scale
- Other IMS technique compatible with FTICR
 - FAIMS (High-field asymmetric waveform ion mobility spectrometry)
 - TIMS (tapped ion mobility spectrometry)
 - Low field access to

Comparison of collision cross section (A²) vs m/2 of lons of tholins sample with polyHCN (blue), tetraalkylammonium salts (red), polyaromatics hydrocarbons (black) and polyglycan (purple).

DE **ROUEN**

Maillard, J.; Hupin, S.; Carrasco, N.; Schmitz-Afonso, I.; Gautier, T.; Afonso, C., Structural elucidation of soluble organic matter: Application to Titan's haze. Icarus 2020.

• Owing to the high complexity IMS-TOF analysis is very challenging and limited to low masses

TIMS-FTICR

Experiments at Bruker (Summer 2018)

Trapped Ion Mobility Spectrometry (TIMS)

CINIS

TIMS-FTICR of Tholins

DE ROUEN Ruger, C. P.; Maillard, J.; Le Maitre, J.; Ridgeway, M.; Thompson, C. J.; Schmitz-Afonso, I.; Gautier, T.; Carrasco, N.; Park, M. A.; Giusti, P.; Afonso, C.,. J Am Soc Mass Spectrom 2019, 30 (7), 1169-1173. 50

CNrs

AFM @ IBM

_	_	 -	
			1

F. Schulz, J. Maillard, K. Kaiser, I. Schmitz-Afonso, T. Gautier, S. Afonso, N. Carrasco and L. Gross, The Astrophysical Journal Letters, 2021, 908.

TIMS FTICR of petrophyrins Structural analysis

	Article
pubs	acs.org/EF

Analysis of Geologically Relevant Metal Porphyrins Using Trapped Ion Mobility Spectrometry–Mass Spectrometry and Theoretical Calculations

Paolo Benigni,[†] Carlos Bravo,[†] J. Martin E. Quirke,[†] John D. DeBord,[†] Alexander M. Mebel,[†] and Francisco Fernandez-Lima^{*,†,‡}

[†]Department of Chemistry and Biochemistry and [‡]Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States

What about their structure in real sample?

Scheme 1. Diagram Illustrating the Chemical Changes Outlined in the Treibs Hypothesis a

^aNote the changes in the different functional groups observed.

Attribution and extraction of petroporphyrins signals

Molecular formula [M+H]⁺	Calculated m/z	Experimental	Error	C#	DBE	Г	MScore (Å	25	FWHM (s)
	Calculated m/2	m/z	(ppm)	C#	DDE		CCS_{N2} (A		
$C_{26}H_{25}N_4O_1V_1^+$	460.14625	460.14624	0.01	26	17		199.6		27
$C_{27}H_{27}N_4O_1V_1^+$	474.1619	474.16189	0.01	27	17		205.1		29
$C_{28}H_{29}N_4O_1V_1^+$	488.17755	488.17754	0.01	28	17		210.8		32
$C_{27}H_{25}N_4O_1V_1^+$	472.14625	472.14623	0.04	27	18		201.3		34
$C_{28}H_{27}N_4O_1V_1^+$	486.1619	486.1619	-0.01	28	18		206.9		38
$C_{29}H_{29}N_4O_1V_1^+$	500.17755	500.17754	0.01	29	18		212.7		35
$C_{30}H_{31}N_4O_1V_1^+$	514.1932	514.19319	0.01	30	18		217.3		35
$C_{31}H_{33}N_4O_1V_1^+$	528.20885	528.20885	-0.01	31	18		222.8		34
$C_{28}H_{25}N_4O_1V_1^+$	484.14624	484.14626	-0.02	28	19		203.7		38
$C_{29}H_{27}N_4O_1V_1^+$	498.1619	498.16184	0.1	29	19		210.1		38
$C_{30}H_{29}N_4O_1V_1^+$	512.17755	512.17751	0.07	30	19		215.3		41
$C_{29}H_{25}N_4O_1V_1^+$	496.14625	496.14628	-0.07	29	20		208.8		39
$C_{30}H_{27}N_4O_1V_1^+$	510.1619	510.16188	0.04	30	20		214		46
$C_{30}H_{25}N_4O_1V_1^+$	508.14625	508.14629	-0.09	30	21		210.6		37
$C_{31}H_{27}N_4O_1V_1$	522.1619	522.16191	-0.04	31	21		215.9		40
$C_{32}H_{29}N_4O_1V_1^+$	536.17755	536.17754	0.01	32	21		222		39
$C_{33}H_{31}N_4O_1V_1^+$	550.1932	550.19319	0.02	33	21		226.9		44
$C_{32}H_{27}N_4O_1V_1^+$	534.1619	534.16193	-0.06	32	22		218.5		43

Information recovered using the CCS vs m/z graphic

C₂₈H₂₉N₄OV⁺ *m/z* 488.17755 C8

CITS CITIST

Plot of the experimental ^{TIMS}CCS_{N2} (Å²) of porphyrins by DBE (DBE 17 to 21) as a function of m/z. Linear regression is given for the different homolog rows.

C₂₀H₁₃N₄OV⁺ m/z 376.05235

Core 1

INSA

DE **ROUEN**

C₂₄H₁₉N₄OV⁺

DBE 18

DBE 19

C₂₂H₁₅N₄OV⁺ *m/z* 402.06800 Core 3

C₂₈H₂₅N₄OV⁺

 $C_{24}H_{17}N_4OV^+$ *m/z* 428.08365

Core 6

C₂₆H₂₁N₄OV⁺ m/z 456.11495 Core 7

DBE 20

m/z 426.06800

C₃₂H₃₁N₄OV⁺ m/z 538.19320 Core 9

C₂₈H₂₃N₄OV⁺ *m/z* 482.13060 Core 10

C₃₀H₂₇N₄OV⁺ m/z 510.16190 Core 11

DBE 21

 $C_{28}H_{21}N_4OV^+$

m/z 480.11495

Core 12

vo

NH+ N

C₃₆H₃₇N₄OV⁺

m/z 592.24015

Core 13

C₂₈H₁₉N₄OV⁺ m/z 478.09930

DBE 22

m/z 534.16190

To CCS Calculations

Drawing of all possible core structures

Calculation of CCS for proposed core structures

C₂₆H₂₅N₄OV⁺ *m/z* 460.14625 C6

C₂₇H₂₇N₄OV⁺ *m/z* 474.16190 C7 C₂₈H₂₉N₄OV⁺ *m/z* 488.17755 C8

N

NH

3D model of metal containing compounds

Use of DFT with Gaussian m062x/6-31g(d,p) level

CCS calculations with IMOS

Shrivastav, V., M. Nahin, C. J. Hogan and C. Larriba-Andaluz (2017). J Am Soc Mass Spectrom **28**(8): 1540-1551.

Exclusion of several core structures

DBE 20

C₂₄H₁₅N₄OV

DBE 17

C₂₀H₁₃N₄OV⁺ m/z 376.05235

Core 1

DBE 18

 $C_{24}H_{19}N_4OV^+$

m/z 430.09930

 $C_{22}H_{15}N_4OV^+$ m/z 402.06800 Core 3

vo NH⁺

C₂₄H₁₇N₄OV⁺ *m/z* 428.08365 Core 6

 $C_{26}H_{21}N_4OV^+$ m/z 456.11495

Core 7

10 $C_{28}H_{21}N_4OV^+$ m/z 426.06800 m/z 480.11495 Core 12

DBE 21

C₃₆H₃₇N₄OV⁺

m/z 592.24015

Core 13

DBE 22

Calculations of putative structures

m/z IMS-MS diagram of theoretically calculated isomers of the m/z 514.19320 and 554.22450 (light blue dots) and the corresponding experimental measurement (orange star). Selected isomeric structure are included visualizing unlikely (high deviation) and likely (low deviation) structures.

- Analysis of real petrophyrin by TIMS-FTICR
- Experimental CCS determination
- Theoretical CCS determination of petroporphyrin cores and akylated cores
- Comparison of experimental and theoretical data allowed to propose putative species with CCS in agreement with the experimental values.

cIMS Experiments in Manchester

Johann Le Maitre

Christopher Ruger

Core structure

C₃-SH₄ split: VGO on the cIMS-MS

Acknowledgments Marie Hubert-Roux Julien Maillard Johann Le Maitre Charlotte Mase

Christopher P. Rüger **Ralf Zimmermann**

Pierre Giusti Anna-Luiza Siqueira

C2MC

NTERNATIONAL COMPLEX MATRICES MOLECULAR

BRUKÉR

Brice Bouyssiere Ryan Rodgers

Mark Ridgeway Mel Park Christopher Thompson

