

Sulfur compounds characterization using FT-ICR MS: towards a better comprehension of vacuum gas oils hydrodesulfurization process

Julie Guillemant¹, Alexandra Berlioz-Barbier¹, Luis Pereira de Oliveira¹, Marion Lacoue-Nègre¹, Ludovic Duponchel² and Jean-François Joly¹

> ¹IFP Energies Nouvelles, Solaize, France ²LASIRE, Univ. Lille, France *julie.guillemant@univ-pau.fr*

PETROLEUM CUTS

Depending on crude oil origin, up to 100% can contain **heavy cuts** that have a lower commercial value than light products

□ How can we valorize these heavy cuts ?

VGO **conversion** into lighter cuts thanks to several **processes** using **catalysts** that might be **deactivated** by heteroatomic compounds¹ (N, O, S...).

□ How can we improve conversion processes ?

Removal of sulfur compounds using hydrodesulfurization process prior to conversion processes to improve conversion efficiency²

¹ Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions. Sau, M, Catalysis Today, 2005
 ² Hydrodesulfurization Reactivities of Various Sulfur Compounds in Vacuum Gas Oil, Ma, X, . Ind. Eng. Chem. Res. 1996

HYDRODESULFURIZATION PROCESS

Ultra-high resolution mass spectrometry: FT-ICR MS

Sulfur compounds characterization using FT-ICR MS: towards a better comprehension of vacuum gas oils hydrodesulfurization process, Guillemant J. et al., Fuel Processing Technology, 2020

One feedstock and 6 hydrotreated samples produced using:

- Two different **catalysts**: A and B \rightarrow evaluation of catalyst efficiency
- Three different **temperatures**: $1 < 2 < 3 \rightarrow$ evaluation of temperature impact

Sample	S content (ppm)	Catalyst	LHSV (⁻¹)	Pressure (bars)	Temperature (°C)	H ₂ /HC (NL/L)
Feed	18921	-	-	-	-	-
A-1	1251	A	1	а	1	а
A-2	693	A	1	а	2	а
A-3	334	A	1	а	3	а
B-1	949	В	1	а	1	а
B-2	483	В	1	а	2	а
B-3	200	В	1	а	3	а

FT-ICR MS sample preparation

- The feed and the hydrotreated samples were first solubilized in Toluene to 1% w/w
- The samples were diluted to 0.05% v/v in a 90%-10% Toluene-Methanol
- 6 technical replicates were prepared and analyzed in the same experimental conditions

INSTRUMENTAL SET-UP

FT-ICR MS

Thermo LTQ FT Ultra 7T

- APPI ion source operated in (+) mode
- m/z 98 to 1000
- R=200,000 at m/z 500
- 70 scans, 4 μ-scans, 1.6s transient
- Focus on S1 class (M^{+•})

- Increased resolution of about 2.5% for VGO samples up to 700,000
- Mass error below 800 ppb
- Pseudo-concentration: Relative intensity × Sulfur content (ppm)

COMPARISON OF ALL SAMPLES

25

20

15

10

10

20

30

DBE

.....

BROOM STREET

DBE=f(#C) plots: Fast evaluation of **temperature** and **catalyst effects** on the aromaticity and alkylation levels of the sulfur compounds

Temperature effect

□ FT-ICR MS data processing for **chemometrics**: unfolding on the DBE=f(#C)

COMPARISON OF ALL SAMPLES

DBE 10, C19 DBE 9, C30 C18-DBT C7-DBT DBE 9, C20 DB DBE C8-DBT C21 C20-[**DBE 11 DBE 6, C27** C24-DB C19-BT **DBE 6, C3 DBE 9, C36** C24-BT C24-DBT

- Separation of the feed from the effluents on PC1: linked to BT and DBT contents
- Separation of the effluents depending on the HDT severity on PC2: more alkylated species at high HDS efficiency

Atypical projection for sample B-1 compared to A-1?

Low temperature case: A-1 and B-1

Activity of catalyst B is separated into **4 phases**:

Phase 1: both catalysts A and B have similar activity Phase 2: catalyst B is by far more efficient than catalyst Phase 3: both catalysts A and B have similar activity Phase 4: catalyst A is slightly more efficient than catalyst B

Catalyst B is more selective towards DBT compounds (DBE 9-10-11)

Catalyst A is a little bit more selective towards very aromatic compounds (DBE >14)

> Two possible hydrodesulfurization mechanisms?

COMPARISON OF ALL SAMPLES

DBE 9 case:

- DBT in sample A-1 are **less alkylated** than DBT in sample A-2
- □ Catalyst A: change in alkylation level compared to feed → catalyst A more efficient to remove very alkylated species
- □ Catalyst B: no change in alkylation level compared to feed → catalyst B more efficient to remove less alkylated species

Two possible hydrodesulfurization mechanisms ?

Global comparison

- FT-ICR MS is a very powerful tool to monitor the hydrodesulfurization mechanism
- The effects of temperature and catalyst over the global HDS efficiency were studied
- The main refractory compounds were identified: dibenzothiophenes family

Aromaticity

- The DBT with a DBE equal to 9 were shown to be the most refractory compounds
- At the lowest HDS severity, both catalysts were shown to present different selectivity

Alkylation

- The carbon atoms distribution of the DBE 9 compounds was relatively large (C15-C42)
- The hydrogenation of poorly alkylated species was slower at low temperature
- At the lowest HDS severity, both catalysts were shown to present different selectivity

Perspectives: ion mobility analysis to identify the most refractory isomers, DBT ?

Januar

Januar

Januar

Járán

Járán

 PhD supervisors: Alexandra Berlioz-Barbier, Florian Albrieux, Luis Pereira de Oliveira, Marion Lacoue-Nègre, Jean-François Joly, Ludovic Duponchel and Jérémie Ponthus

IFPEN MS team

Brice Bouyssiere

EU FT-ICR MS committee

Thank you for your attention !

(@) julie.guillemant@univ-pau.fr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731077.