

ANALYSIS OF SOLID AND LIQUID SAMPLES IN THE CONTEXT OF SWIM USING LDI FT-ICR MS

EU_FT-ICR_MS – 2nd Advanced User School

NATHANIEL TERRA TELLES SOUZA ^{a,b,e}, Leticia M. Ligiero ^{b,e}, Nicolas Agenet ^b, Marie Hubert-Roux ^{c,e}, Carlos Afonso ^{c,e}, Ryan Rodgers ^{a,d,e}

> ^a Université de Pau et des Pays de L'Adour, IPREM ^b Pôle d'Études et de Recherche de Lacq (PERL) - TotalEnergies ^c Normandie Université, COBRA ^d Florida State University, NHMFL ^e International Joint Laboratory iC2MC : Complex Matrices Molecular Characterization

Introduction

SMART water = low salinity water (or water with a controlled composition)

SWIM effects: wettability changes and increase in oil recovery rate

Determining mechanism: unknown, despite the several proposed mechanisms found in literature

Need of a better characterization of organic species adsorbed onto the rock surface and their influence on wettability changes during SMART waterflooding

Gaseous

Others

EOR

Therma

TotalEnergie

Experimental Methods

Laser Desorption Ionization (LDI)

Frequency-tripled Nd:YAG laser (355 nm)

Mamyrin BA (1994) Laser Assisted Reflectron Time-of-Flight Mass Spectrometry. Int J Mass Spectrom Ion Proc 131:1–19. doi:10.1016/0168-1176(93)03891-O

Sample deposit on the target

- Dry droplet method for crude oil samples
- Powder samples deposited with the help of a pestle

Laser Power Optimization

- Ion production threshold
- Artifact formation and fragmentation

Solid samples require higher laser power

(+) LDI FT-ICR MS

- Odd-electron ions are dominant in positive mode
- Higher laser power (24%) increase the formation of even-electron ions
- N1 and HC classes represent ~ 90% of the detected ions
- Decrease of N1 for aged powder

(+) LDI FT-ICR MS – DBE vs C#

TotalEnergies

- No significant differences are observed between crude oil and aged powder for HC and O1 species. Same thing happens to even-electron ions
- Depletion of high DBE N1 species is observed in aged powder
- Direct and indirect (solvent extract) analysis of aged powder present similar results

(-) LDI FT-ICR MS

No signal was obtained durii the direct analysis of so samples in (-) LDI

- Even-electron (deprotonated) ions are dominant in negative mode
- Bigger diversity of chemical classes than in positive mode
- Aged powder extract enriched with HC, N1, O3 and O4 compounds

(-) LDI FT-ICR MS – DBE vs C#

• Decrease of highly aromatic carboxylic acids

330.20

m/z

330.10

Conclusions

- Solid samples demand higher laser power for ionization to happen in positive mode, because the organic species are adsorbed and maybe chemically bound to the powder surface
- Direct and indirect (solvent extract) analysis of aged powder present very similar results in positive mode
- (-) LDI detects a bigger number of chemical classes than (+) LDI
- Aged powder extract is enriched with acidic N1 species with high DBE and small C#. Bigger molecules might remain adsorbed/bound to the powder surface

Thank you

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 731077.