

Current capabilities in 2DMS on FTICR mass spectrometers

Pui Yiu (Yuko) Lam, Chris Wootton, Johanna Paris, Tomos Morgan, Bryan Marzullo, Maria van Agthoven, Alina Theissen,

Peter B. O'Connor

University of Warwick, Coventry, United Kingdom

EU_FT-ICR_MS 2nd Advanced Users School Prague, 26 - 30 September 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731077.

Current capabilities in 2DMS on FTICR mass spectrometers

Pui Yiu (Yuko) Lam, Chris Wootton, Johanna Paris, Tomos Morgan, Bryan Marzullo, Maria van Agthoven, Alina Theissen, <u>Peter B. O'Connor</u>

> EU_FT-ICR_MS 2nd Advanced Users School Prague, 26 - 30 September 2021

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

- Extremely high resolving power
- Many (new) types of MSⁿ
- New instrumentation

Figure 1. (A) Time-domain transient of the resperine $[M + H]^+$ ion in heterodyne mode, acquired for 2 min. (B) Spectrum in both magnitude- (grey) and absorption-mode (black), the peak width of the magnitude-mode is labelled.

THE UNIVERSITY OF WARWICK

Qi, Y.; Witt, M.; Jertz, R.; Baykut, G.; Barrow, M. P.; Nikolaev, E. N.; O'Connor, P. B., Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell. *Rapid Commun. Mass Spectrom.* 26 (17), (**2012**) 2021-2026.

Tandem Mass Spectrometry or MS/MS

UVPD spectrum of carbonic anhydrase (34+) and its sequence map

ΞK

Shaw, J. B.;; Brodbelt, J. S., Complete Protein Characterization Using Top-Down Mass Spectrometry and Ultraviolet Photodissociation. *J Am Chem Soc 2013, 135 (34), 12646-12651.*

But, what if we don't need to isolate prior to fragmentation?

J. Am. Chem. Soc. 1988, 110, 5625-5628

Broad-Band Two-Dimensional Fourier Transform Ion Cyclotron Resonance

Peter Pfändler,[†] Geoffrey Bodenhausen,^{*†} Jacques Rapin,[‡] Marc-Etienne Walser,[‡] and Tino Gäumann^{*‡}

Contribution from the Institut de Chimie Organique, Université de Lausanne, Rue de la Barre 2, CH-1005 Lausanne, Switzerland, and Institut de Chimie Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland. Received December 17, 1987

Abstract: Two-dimensional Fourier transform ion cyclotron resonance (2D FT-ICR) allows one to obtain direct evidence for the occurrence of ion-molecule reactions. In 2D FT-ICR spectra, one observes resonances with two distinct frequency coordinates ω_1 and ω_2 that correspond to the mass-to-charge ratios of the ions that participate as reactants and products, respectively. It is possible to monitor a manifold of distinct reactions in one single 2D spectrum. Spectral ranges of the order of several MHz can be covered by using frequency-swept ("chirped") radio-frequency pulses.

5625

Two-dimensional Mass Spectrometry

Principle of 2D FT-ICR MS: Modulation

Total: 120,000 data points

P. Pfändler, G. Bodenhausen, J. Rapin, M.-E. Walser, T. Gäumann, J. Am. Chem. Soc. 110 (1988) 5625-5628.

Lecture overview

- 2DMS for agrichemical analysis.
- 2DMS for polymer analysis.
- 2DMS for monoclonal antibodies.
- Distinguishing phosphopeptides using 2DMS
- 2DMS UVPD
- 2DMS on a linear ion trap

Agrochemical and pesticide analysis

Pesticides degrade and react with their local environment to produce many potentially dangerous compounds:

Scheme 2 Metabolism of azoxystrobin in plants.

Copping, Leonard G. "Metabolic pathways of agrochemicals: part twoinsecticides and fungicides, eds-in-chief T Roberts and D Hutson, Royal Society of Chemistry, Cambridge, 1999, 1475 pp, ISBN 085404 499 X." *Pest Management Science: formerly Pesticide Science* 56.1 (2000): 103-104.

2D IRMPD MS

2DMS provides a wealth of information in a single plot:

2D IRMPD MS – autocorrelation (precursor) line

2D IRMPD MS

2D EID MS

2D EID MS

Allows both identification of known products / toxins And characterisation of unknowns easily and accurately Can use multiple types of analysis (EID or IRMPD shown)

Pirimiphos-methyl

Absolute Average: 0.312 ppm Standard Deviation: 0.385 ppm

	Relative			
m/z	Intensity	Description	Theoretical Mass	Error
290.07239	0.47	C10H17N3O3PS	290.07228	0.411
278.07227	0.57	C9H16N3O3PSH	278.07228	-0.009
276.05665	0.39	C9H15N3O3PS	276.05663	0.075
274.13167	0.41	C11H21N3O3P	274.13150	0.596
274.07733	0.60	C10H16N3O2PSH	274.07736	-0.128
262.05342	0.09	C9H15N2O3PS	262.05355	-0.493
262.04083	0.27	C8H13N3O3PS	262.04098	-0.556
250.04110	0.15	C7H13N3O3PS	250.04098	0.489
246.04608	0.45	C8H13N3O2PS	246.04606	0.059
244.03039	0.37	C8H11N3O2PS	244.03041	-0.088
242.10537	0.22	C10H17N3O2P	242.10529	0.325
233.01443	0.59	C7H10N2O3PS	233.01443	0.012
230.01457	0.11	C7H9N3O2PS	230.01476	-0.825
228.08968	0.12	C9H15N3O2P	228.08964	0.165
218.01495	0.06	C6H9N3O2PS	218.01476	0.872
212.00441	0.06	C7H7N3OPS	212.00420	0.991
207.08940	0.14	C7H16N2O3P	207.08931	0.465
197.09803	0.08	C9H15N3S	197.09812	-0.459
196.14446	0.16	C10H18N3O	196.14444	0.124
196.09034	0.14	C9H14N3S	196.09029	0.226
195.13652	0.12	C10H17N3O	195.13661	-0.491
182.12885	0.16	C9H16N3O	182.12879	0.332
182.07458	0.08	C8H12N3S	182.07464	-0.349
181.12101	0.35	C9H15N3O	181.12096	0.255
180.11315	0.46	C9H14N3O	180.11314	0.070
179.05809	0.03	C5H12N2O3P	179.05801	0.488
168.11314	0.11	C8H14N3O	168.11314	-0.004
168.05902	0.11	C7H10N3S	168.05899	0.155
166.09747	0.07	C8H12N3O	166.09749	-0.098
166.04342	0.02	C7H8N3S	166.04334	0.480
165.12605	0.07	C9H15N3	165.12605	0.033
164.11825	0.62	C9H14N3	164.11822	0.172
163.11050	0.06	C9H13N3	163.11040	0.643
152.08186	0.28	C7H10N3O	152.08184	0.170
151.02672	0.13	C3H8N2O3P	151.02671	0.097
150.10263	0.18	C8H12N3	150.10257	0.368
138.06627	0.05	C6H8N3O	138.06619	0.617
136.08691	0.06	C7H10N3	136.08692	-0.090
124.98209	0.22	C2H6O2PS	124.98206	0.218
108.05562	0.04	C5H6N3	108.05562	0.000

Assignments - 2D IRMPD

Assignments - 2D EID

Case study of 2DMS with Syngenta UK

Agrochemical and pesticide analysis

Issues with current analysis:

- Unique method required for certain compounds – no one-size-fits-all
- LC-MS/MS based fails to scale with complexity, induces bias in LC
- Restricted solvent systems makes certain compounds "off-limits" or require separate methods
- Large optimisations needed for each question, no future proofing for later questions – very long and expensive

What we achieved:

- Parallel analysis of all pesticide and degradation products in one run
- Extensive fragmentation patterns for each unique species – enables accurate identification
- Data independent analysis which is future-proof for unknown questions
- Less bias analysis, not reliant on solvent systems or LC compatibility

Lecture overview

- 2DMS for agrichemical analysis.
- 2DMS for polymer analysis.
- 2DMS for monoclonal antibodies.
- Distinguishing phosphopeptides using 2DMS
- 2DMS UVPD
- 2DMS on a linear ion trap

Case study of 2DMS with Astra Zeneca UK

Biologically relevant polymer analysis

Polymer analysis by mass spectrometry

- Increased use of polymeric species as therapeutic agents
- Movement away from PEG due to chemical modification
- Focus on primary chemical structure and how this varies properties
- Presence of sample complexity as well as need to understand primary structure

WICK

К

Fragment ion scans

ΞK

 Zoom in of region shows isotopic distribution

Combined R = 435,000,000

IK

Spacing of lines is equal to that of (monomer mass)/3 due to charge

ÌΚ

- Neutral losses from charged reduced species
- Fragments on the same intercept means the loss is equal from the charged reduced species

 \mathbf{K}

- Neutral losses from charged reduced species
- Fragments on the same intercept means the loss is equal from the charged reduced species
Conclusions

- ECD fragmentation can be used to analyze a polyoxazoline
- 2D mass analysis gives significant fragment information

Lecture overview

- 2DMS for agrichemical analysis.
- 2DMS for polymer analysis.
- 2DMS for monoclonal antibodies.
- Distinguishing phosphopeptides using 2DMS
- 2DMS UVPD
- 2DMS on a linear ion trap

Case study of 2DMS with UCB

Antibody modification analysis

Antibodies are large, complex biomolecules which are often biologically modified for function (good). But also get modified/degrade during bio-production, leading to either little/no change (good) Loss of function (bad) Or different function (possibly very bad) 2DMS can handle complex samples where LC often fails Figure 4. Sequence coverage (in yellow) and cleavage coverage (in red) obtained with the 2D MS IRMPD analysis of the tryptic digest of IgG1 A Light Chain (LC) results. B Heavy Chain (HC) results.

DIQ MTQSPSSLSASVGDRVTIITICKA SQNVIRTVVAWYQQXPGKAPKTLIVL ASNRHTGVPSRFSSSGTDFTTLI SSLQPEDFATYFCLQHWSYPLTFGQ GTKVEIXKRTVAAAPSVFIIFIPSDEQU KSGTASVVCLINNFYPREAKVQMVV DINALQSGNSQESVTEQQSKDSTYSL SSTLTLSKADVEIKHKVYACEIVTINQG LSSPVTKSFNRGEC EV QLVESGGQLVQPGGSURLSCAA SGFAFSTYDMSWVRQAPGKGLEWVAT ISS GSYTYVLDSVK GAFGKGLEWVAT ISS GSYTYVLDSVK GFFTIJSR DJSS KNTLYLQMNSLRAEDTAVYYCAPTT VVPFAYWGQGTLVTVSSASTKGFJSV FPLAPSSKSTSGGTAALGGLVK DY FPLAPSSKSTSGGTAALGGLVK DY FPLAPSSKSTSGGTAALGGLVK DY SSGLYSLSSVYTVPSSSLGTQTYLC NVN HKPSNTKVDKKVEJPSSCDKTHT CPPCPAPELLGGPSVFLFPPKPK DT LMISTPEVTCVVDVSHEDPEVJKF NWYVDGVEJVHNAKTKPREEQYNSTY RVJSVLIVLHQDWLINGKETKCKVSN KALPAPIEKTISKAX GQPELPQVHT LPPSRDELTKNQVSLTICLVKGFYPS

DGSFFLYSKLTVDKSRWQQGNVFSC

R

4 major peptides are not found in the auto-correlation line and the 1D full MS spectra. Due to their sizes, they need to be multiply charged to be in the scan range. The competitive ionisation of the other peptides, make inefficient their ionisation.

With IRMPD, the peptides are highly susceptible to be internally fragmented.

The sequence coverage is 71%. The cleavage coverage is 34%. The cleavage coverage on the found peptides is 48%.

Extracted Lines Resolution

Peak Picking Resolution

PTM Detection -Antibody

WARWICK

Lecture overview

- 2DMS for agrichemical analysis.
- 2DMS for polymer analysis.
- 2DMS for monoclonal antibodies.
- Distinguishing phosphopeptides using 2DMS
- 2DMS UVPD
- 2DMS on a linear ion trap

Phosphorylation

٠

•

- Serine, Threonine or Tyrosine
- Phosphoester linkage.
- Regulation of intercellular processes
 - Cell signalling pathway
- Change activity, subcellular location, degradation and interaction with other proteins
 - Limit of RP-LC: the phosphopeptide loss during the sample preparation or the liquid chromatography

THE CELL, Fourth Edition, Figure 8.38 @ 2006 ASM Press and Sinauer Associates, Inc.

- CO₂ laser (10.6 µm photons)
- Resonance with the P-O stretch of the phosphate (9.6-11 μm)

Figure. IRMPD spectra. Fragmentation efficiencies defined as $-\ln(P/F + P)$, with F being the sum of fragment abundances and P the abundance of the intact precursor.

Correia, C. F.; Balaj, P. O.; Scuderi, D.; Maitre, P.; Ohanessian, G. *J. Am. Chem. Soc.* 2008, *130*, 3359-3370.

2D MS IRMPD Analysis of Phosphopeptides

Figure. 2D FT-ICR spectra IRMPD of the Phosphomix, y: 8192 lines, x: 1 megapoints

Direct infusion. 10 Phosphopeptides. No prior separation.

In pink and purple, precursor lines.

In black, auto-correlation line. In blue and green, neutral loss lines.

Horizontal: 1,048,576k transients (broadband) Vertical: 8,192 scan lines. Total: 8,589,934,592 data points

Loss of Ph07 Hydrophobic peptide

Zoom into a region

Total: 8,589,934,592 data points

Extracted fragment Line of Ph06

All Results

Advantages of 2DMS strategy: **Direct infusion Quick identification with neutral loss** lines **IRMPD** selectively fragment phosphopeptides

Fragmentation of the Phosphopeptides

In red fragment without Phosphate In green fragment with Phosphate Ph01 V L H S G S R Ph02 R S Y S R S R Ph03RDSLGTYSSR Ph04 TKLITQLRDAK Ph05EVQAEQPSSSPR Ph06 A D E P S S E E S D L E I D K Ph08FEDEGAGFEESSETGDYEEK Ph09ELSN_PSPLRENSFG_pSPLEFR Ph10SPTEYHEPVYANPFYRPTTPQR

Lecture overview

- 2DMS for agrichemical analysis.
- 2DMS for polymer analysis.
- 2DMS for monoclonal antibodies.
- Distinguishing phosphopeptides using 2DMS
- 2DMS UVPD
- 2DMS on a linear ion trap

solariX – Laser Setup

Dichroic mirror allows co-alignment of UV and IR beams

Coherent ExciStar XS, 193 nm Synrad 48-2, 10.6 µm

UVPD-2DMS: Ubiquitin

WARWICK

 \star Scintillation noise

★ Precursor

10+:9%

Lecture overview

- 2DMS for agrichemical analysis.
- 2DMS for polymer analysis.
- 2DMS for monoclonal antibodies.
- Distinguishing phosphopeptides using 2DMS
- 2DMS UVPD
- 2DMS on a linear ion trap

Figure 1. SIMION model of the linear ion trap with equipotential lines. a) Horizontal cut. b) Vertical cut of trapping electrode. c) Vertical cut of center quadrupole. d) Vertical cut of side quadrupole. The voltages applied on the LIT electrodes in this instance are $+10.0 V_{DC}$ on the end-cap electrodes, $+5.0 V_{DC}$ on the outer quadrupole rods, $+/-100.0 V_{RF}$ on the quadrupole rods. The equipotential lines are for: -100.0 V, -75.0 V, -50.0 V, -25.0 V, -10.0 V, 0.0 V, +2.5 V, 5.0 V, and 10.0 V.

2D MS in a Linear Ion Trap with SWIM

- Simion ion trajectory simulations show that 2DMS can be done on a linear ion trap.
- We have built a LIT-2DMS system and are in the process of testing the prototype.
- If coupled to a TOF mass analyzer, a LIT-TOF instrument could allow full
 2DMS experiments in less than 10 seconds.

Maria van Agthoven, Peter B. O'Connor, 2 Dimensional Mass Spectrometry in a Linear Ion Trap UK Patent GB1615469, 2016.
Maria van Agthoven and Peter B. O'Connor, Rapid Communications in Mass Spectrometry 2017, 31 (8), 674-684

Tailored excitation for Fourier transform ion cyclotron mass spectrometry

Alan G. Marshall, Tao Chin Lin Wang, and Tom L. Ricca

 ♥ Cite this: J. Am. Chem. Soc. 1985, 107, 26, 7893-7897
Publication Date: December 1, 1985 ∨ https://doi.org/10.1021/ja00312a015

Figure 1. Desired excitation power spectra for Fourier transform ion cyclotron resonance mass spectrometry (FT/ICR). Top: Flat power over a specified mass range, for ordinary detection and/or isotope-ratio measurements. Middle: Flat excitation with a zero-power window, for use in the first stage of MS/MS experiments. Bottom: Multiple-frequency excitation for use in multiple-ion monitoring.

Figure 2. Previously employed time-domain excitation waveforms and their corresponding frequency-domain magnitude-mode spectra. Top: Single-pulse excitation (1). Middle: Frequency-sweep excitation (2, 12). Bottom: Pseudorandom noise excitation (13). Note the nonflat power and broad cutoff shoulders.

Figure 5. Time-domain excitation waveforms (right) generated by inverse Fourier transformation of the desired frequency-domain excitation spectra (left). Because mass and frequency are inversely related in ICR, the desired excitation mass spectra of Figure 1 are readily converted to those shown at the left in this figure.

J. Am. Chem. Soc. 1993, 115, 7854-7861

Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry/Mass Spectrometry with Stored-Waveform Ion Radius Modulation

Charles W. Ross, III, Shenheng Guan, Peter B. Grosshans,[†] Tom L. Ricca,[‡] and Alan G. Marshall^{*,‡}

Contribution from the Department of Chemistry, The Ohio State University, 120 West Eighteenth Avenue, Columbus, Ohio 43210

Received March 4, 1993

Abstract: A fundamentally new two-dimensional Fourier transform ion cyclotron resonance mass spectrometry experiment, SWIM ("stored-waveform ion modulation") 2D-FT/ICR MS/MS, is described. Prior encodement of the second dimension by use of two identical excitation waveforms separated by a variable delay period (analogous to 2D-NOESY NMR) is replaced by a new encodement in which each row of the two-dimensional data array is obtained by use of a single stored excitation waveform whose frequency-domain magnitude spectrum is a sinusoid whose frequency increases from one row to the next. In the two-dimensional mass spectrum, the conventional one-dimensional FT/ICR mass spectrum appears along the diagonal, and each off-diagonal peak corresponds to an ion-neutral reaction whose ionic components may be identified by horizontal and vertical projections to the diagonal spectrum. Fragmentation due to (e.g.) collision-induced dissociation results in peaks on only one side of the diagonal, whereas bidirectional ion-molecule reactions result in peaks on both sides of the diagonal. All ion-molecule reactions in a gaseous mixture may be identified from a single 2D-FT/ICR MS/MS experiment, without any prior knowledge of the system.

The fundamental concept of SWIM:

Through each of the succeeding scans, calculate a SWIFT pulse with steadily incrementing cycles of a sine wave.

This will have the effect of modulating ion radius rapidly on the right end of the spectrum and slowly on the left end, and linearly varying modulation frequencies in between.

When combined with a radiusdependent fragmentation method, to create a 'fragmentation zone', this allows 2DMS.

Figure 2. SWIFT magnitude-mode spectra (see eq. 3) of several parent ion modulation waveforms, for j = 1, 2, and 10. Note that the excitation amplitude for ions of the highest cyclotron frequency, 1333.0 kHz, is modulated the fastest in proceeding from one waveform to the next, whereas the excitation amplitude for ions of the lowest cyclotron frequency, 100 kHz, is not modulated at all from one waveform to the next. The mass-to-charge ratio range corresponding to these ion cyclotron frequencies is 34.8 < m/z < 463 ($B \approx 3.02$ T).

Application of Stored Waveform Ion Modulation 2D-FTICR MS/MS to the Analysis of Complex Mixtures

Charles W. Ross, III,*,† William J. Simonsick, Jr.,‡ and David J. Aaserud‡

DuPont Marshall R & D Laboratory, Philadelphia, Pennsylvania 19146, and Merck Research Labs, Merck & Co. Inc., West Point, Pennsylvania 19486

Figure 3. Power plot of the SWIM two-dimensional Fourier transform mass spectrum of the reactive oligomer intermediate.

Horizontal: 16k transients (narrow band) Vertical: 128 scan lines. Total: 2,097,152 data points

Verdel Instruments: 2DMS using UVPD on a Q-TOF

MaXis ETD II Q-TOF

Instrument Modifications

• Transformed quadrupole to linear ion trap (LIT).

• Control of LIT lenses with DC trapping amp.

Excitation of Ions

Substance P: 449.9 m/z isotope pattern

LEADING INNOVATION IN TOC-MSTM

TOTAL CORRELATION MASS SPECTROMETRY"

The Next Generation of Mass Spectrometry

Compatible with any mass spectrometer that uses linear ion trap technology.

2-Dimensional mass spectrometry

- 2-dimensional mass spectrometry (2DMS) is now feasible, and bordering on the routine, for a wide range of samples in FTICR mass spectrometry.
- 2DMS can be achieved by modulating ions through a fragmentation zone (with frequencies dependent on m/z) using the Gaumann pulse sequence or the SWIM methods. Fragments will appear at the modulation frequencies thus correlating fragments with their precursors. The Fourier transform can extract those frequencies.
- 2DMS requires large data sets, currently up to 2B data points or more, which wasn't really feasible to process in the 1990's, but it now can be done.
- 2DMS can be done with a range of fragmentation methods, including IRMPD, ExD, and UVPD.
- 2DMS can be done on a linear ion trap, and we've spun out Verdel Instruments to achieve this commercially.

ICL Re

Horizon 2020 European Union funding for Research & Innovation

Funding

- EPSRC (J003022, N021630, N033191)
- BBSRC (P021875, R022399)
- Royal Society Translation Award
- Innovate UK iCure award
- H2020 EU-FT-ICR-MS Network
- Innovate UK / Verdel Instruments Ltd

