Mass Spectrometry for Cultural Heritage Science

Christian ROLANDO

Miniaturization for Synthesis, Analysis & Proteomics USR 3290

EU_FT-ICR_MS, 2nd AUS, Prague

University of Lille, FST

- **Petroleomics** \rightarrow bitumen
- **Proteomics** \rightarrow paleontology, archaeology, Renaissance paint binder
- **Lipidomics**: \rightarrow lipids in archaeological ceramic, oil paint
- **Metabomics**: \rightarrow bee wax, glue, polyphenols from wine or beer
- Glycomics: stucco, watercolor
- **Polymer**: \rightarrow amber, modern paints

Workflow for a new insoluble object in Heritage Science

- Mock samples
- Sample preparation
- Chemical or biological depolylmerization
- Mass spectrometry
- Data treatment

For precious Heritage samples the quantities allow few trials only!

For valuable samples the quantity is always less than necessary to be confortable. Miniaturization is required.

Similar well characterized samples from the Heritage Science point of view or modern for establishing the data bank.

Py-GC MS of modern paint varnishes

Resin A. To a mixture of cyclohexanone (9.8 g, 0.1 mol) and aqueous 5 M sodium hydroxide (50 mL) was added slowly formaldehyde trimer (6.0 g, 2 equiv of CH_2O), producing an exothermic reaction. The mixture was then refluxed for 30 min, yielding a gummy resin which was washed with water and dried in a vacuum dessicator.

Resin B was prepared in the same way, except for the amount of formaldehvde trimer (15 g, 5 equiv) and the reflux time (7 h).

Mestdagh, H., Rolando, C., Sablier, M., & Rioux, J. P. (1992). Characterization of ketone resins by pyrolysis/gas chromatography/mass spectrometry. *Analytical chemistry*, *64*, 2221-2226.

FTICR MS of bitumen from ancient Greek amphora

A,B—the ancient Greek Amphora full of bitumen. C—The place of the discovery.

FT ICR spectrum of the bitumen from amphora, positive ESI mode,

Kostyukevich, Y., Solovyov, S., Kononikhin, A., Popov, I., & Nikolaev, E. (2016). The investigation of the bitumen from ancient Greek amphora using FT ICR MS, H/D exchange and novel spectrum reduction approach. *Journal of Mass Spectrometry*, *51*(6), 430-436.

Methodological developments applied to Cultural Heritage: protein identification

Tokarski C.; Martin E.; Rolando C.; Cren-Olivé C. Anal Chem 2006, 78, 1494-1502

New

Methodological developments in proteomics applied to the analysis of cultural heritage samples

Sergui MANSOUR

Laboratory of Miniaturization for Synthesis, Analysis & Proteomics (MSAP), USR 3290

Archaeological sample

Collaboration with Dr Franca CIBBECCINI, DRASSM

 $\underset{_3}{\text{Location of the shipwreck}}$

- Studied ceramic samples were taken from a Dressel 14 amphora discovered in a shipwreck near the island of Tiboulen de Maïre, near Marseille
- The shipwreck is dated from 116 AD and it was found at 49-50 m deep

Various types of amphorae discovered in the shipwreck; on the right: Dressel 14

Garum fish sauce

- Dressel-14 (Dr. 14) amphorae have been produced in south of Spain (Baetica) and Portugal (Lusitania) from the 1st century AD to the end of the 2nd century AD
- Tituli picti (inscriptions) found on Dr. 14 informs on their fish sauces contents (the studied Dr. 14 did not show titulus pictus)

Map of trade routes in Western Romain Empire for garum (from curtis 2005)

- Liquamen and garum sauces were obtained from fermented fishes (cuisine of Roman antiquity)
- Various recipes were used (e.g. small fishes versus bigger fishes and fish innards)
- Several fish species were used among which mackerels, sardines, tuna,...

Objective of the study: identification of protein remains trapped in the ceramic and identification of fish species

Current fish protein databases

	NCBI	TrEMBL	Swiss- Prot
Actinopterygii (Class)	3858321	1469565	5343
Clupeiformes (Order)	41668	3966	14
Perciformes (Order)	118224	67597	208
Clupeidae (Family)	36836	2274	13
Scombridae (Family)	9736	3425	68
Sardina (Genus)	1507	253	1
<i>Clupea</i> (Genus)	30480	703	16
Scomber (Genus)	1920	1635	22
<i>Auxis</i> (Genus)	605	191	1
<i>Euthynnus</i> (Genus)	271	133	-
Thunnus (Genus)	3188	1347	50
Sardina pilchardus (Species)	323	96	1
Scomber scombrus (Species)	694	207	4
Auxis thazard (Species)	261	6	-
Euthynnus alletteratus (Species)	131	-	-
Thunnus thynnus (Species)	687	325	16
Thunnus alalonga (Species)	436	109	2

• The current fish protein databases have few entries

- Informative entries for our study are missing
- An in house database with various fish species was build

Phylogenetic tree of the studied fish species

		Sardina pilchardus	Scomber scombrus	Auxis thazard	Ehthynnus alletteratus	Thunnus thynnus	Thunnus alalunga
r of JS	NCBI	323	694	261	131	687	436
mbe oteir	TrEMBL	96	207	6	-	325	109
n Pr	Swiss-Prot	1	4	-	-	16	2

6

Experimental procedure

Selection of 6 fish species to build a database (muscle and blood proteins)

Analysis of garum model sauces:

Sardines 1.

Innards of mackerel 2.

(Prepared with traditional recipes by Dr N. Garnier, and Dr E. Botte)

Analysis of archaeological ceramic

Workflow

De novo analysis of the fishes samples with Peaks software

	Sardina	Scomber	Auxis thazard	Ehthynnus	Thunnus	Thunnus
	pilchardus	scombrus		alletteratus	thynnus	alalunga
Number of MS	7729	7889	7664	8111	7584	7762
Number of MS/MS	49427	49329	49526	49144	49608	49526
Peptide-Spectrum	18444	19388	18589	22700	24635	23454
Matches						
Peptide sequences	9970	9804	9499	11596	12435	11068
Missed Cleavages = 0	6229	6711	6266	7493	8268	7405
Missed Cleavages = 1	2629	2394	2446	3013	3101	2780
Missed Cleavages = 2	834	575	660	890	869	741
Missed Cleavages = 3	242	112	117	179	173	131
Protein groups	521	490	441	522	609	428
Proteins	1388	1569	941	1240	1252	774
Proteins (>2 Unique Peptides)	754	83	539	679	685	403

• Successful identification of proteins including muscle proteins and blood proteins

Home-made database: identification fish specific peptides from fresh fishes

Example of Tropomyosin protein extracted from Scomber scombrus fish sample (identified by sequence homology to the *Thunnus thynnus*)

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVDMQKRL KGTEDELEK<u>Y SGALKDVQEK</u> LEVAEKQATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKVA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSETKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

MS/MS spectrum of the doubly charged ion at m/z = 619.816 ($\Delta m = 0.3$ ppm)

 Several peptides (e.g. peptide in position 60-70) are showing amino acids substitutions and can be used to discriminate species

Example of Tropomyosin protein extracted from Scomber scombrus fish sample (identified by sequence homology to the *Thunnus thynnus*)

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVDMQKRL KGTEDELEK<u>Y SGALKDVQEK</u> LEVAEKQATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKVA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSETKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

<i>Scomber scombrus</i> Peptides	Species
YSG <u>A</u> LKD <u>V</u> Q(d)EK	Scomber scombrus (home-made database)
YSG <u>N</u> LKD <u>A</u> QEK	Thunnus thynnus (NCBI database)

Specificity using Blastp on NCBI database (Identities 82%)

<i>Scomber scombrus</i> Peptides	Species
YS G ALKD <mark>V</mark> Q(d)EK	Scomber scombrus (home-made database)
YS <mark>E</mark> ALKD <mark>A</mark> QEK	Stegastes partitus (NCBI database)

Several peptides (e.g. peptide in position 60-70) are showing amino acids substitutions and can be used to discriminate species

Methodology development on model garum samples

Species specific peptide identified in garum sauce

• Muscle and blood proteins identified in the modern garum fishes sauces showed sequence matches and dissimilarities with several species present in the in house database

Example of garum modern sauce made from entire sardine

Sample	Protein	Specific peptide with amino acid substitution
Model garum sardine	myosin light chain 2	NLWAAFPPDV <u>T</u> GNVDYK
<i>Sardina pilchardus</i> in house data base	myosin light chain 2	NLWAAFPPDV <u>T</u> GNVDYK
<i>Thunnus thynnus</i> in house data base	myosin light chain 2	N <mark>M</mark> WAAFPPDV <mark>A</mark> GNVDYK
Sardinops melanostictus NCBI	myosin light chain 2	NLWAAFPPDVTG <mark>Q</mark> VDYK

Doubly charged ion at m/z 953.971 (Δm = 0.4 ppm), Protein identified by sequence homology to the *Thynnus thynnus* species

Analysis of the archaeological sample

	Archaeological sample
Number of MS scans	25609
Number of MS/MS scans	33291
Peptide-spectrum matches	1721
Peptide sequence	701
Missed cleavages = 0	531
Missed cleavages = 1	152
Missed cleavages = 2	23
Missed cleavages = 3	1
Protein groups	39
Proteins	198
Proteins (>2 unique peptides)	157

Successful identification of 157 proteins among them 10 muscle proteins and 2 blood proteins contain specific peptides for fishes

Spectrum signal to noise ratio and sequence coverage

Archaeological Sample

High sequence coverage (61 %),

Tropomyosin protein identified *Thunnus thynnus* (NCBI database) whithout any substitution

MEAIKKKMQM **LKLDKENALD** RAEQSESDKK AAEDRTKQLE DDLVAMQKRL KGTEDELEKY SGNLKDAQEK LEVAEKSATD AEGDVASLNR RIQLVEEELD RAQERLATAL **TKLEEAEKAA** DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR **KYEEVARKLV** VIESDLERTE ERAELSESKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

Grey: All sequenced peptides Yellow: Considered peptide

Sequences alignments (tropomyosin protein)

>Analyzed sample: Archaeological sample

> Tropomyosin [*Thunnus thynnus*-NCBI]

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVAMQKRL KGTEDELEK<u>Y SGNLKDAQEK</u> LEVAEKSATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKAA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSESKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

> In house database Thunnus alalunga

> Tropomyosin [*Thunnus thynnus*-NCBI]

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVAMQKRL KGTEDELEK<u>Y SGNLKDAQEK</u> LEVAEKSATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKAA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSESKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

> In house database Thunnus thynnus

> Tropomyosin [Thunnus thynnus-NCBI]

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVAMQKRL KGTEDELEK<u>Y SGNLKDAQEK</u> LEVAEKSATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKAA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSESKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

> In house database Scomber Scombrus

> Tropomyosin [Thunnus thynnus-NCBI]

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVDMQKRL KGTEDELEKY SGALKDVQEK LEVAEKQATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKVA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSETKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

> In house database Auxis thazard

> Tropomyosin [Thunnus thynnus-NCBI]

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVAMQKRL KGTEDELEK<u>Y SGALKDAQEK</u> LEVAEKSATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKAA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSESKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

> In house database Euthynnus alletteratus

> Tropomyosin [Thunnus thynnus-NCBI]

MEAIKKKMQM LKLDKENALD RAEQSESDKK AAEDRTKQLE DDLVAMQKRL KGTEDELEK<u>Y SGALKDAQEK</u> LEVAEKSATD AEGDVASLNR RIQLVEEELD RAQERLATAL TKLEEAEKAA DESERGMKVI ENRNMKDEEK MEMQDVQLKE AKNIAEEADR KYEEVARKLV VIESDLERTE ERAELSESKC SELEEESKTV TNNLKSLEAQ AEKYTQKEDK YEEEIKVLTD KLKEAETRAE FAERSVAKLE KTIDDLEDEL YAQKQKFKSI SEELDHALND MTSI

Sequences matching(e.g. tropomyosin protein)

บบบบ

EU FT-ICR MS

Proteins identified in the archaeological sample

Among the 157 proteins (\geq 2 unique peptides):

10 muscle proteins:

• 32 peptides discriminant for fishes (comparison with the NCBI database)

2 blood proteins:

4 peptides discriminant for fishes

The peptides identified in the archaeological sample showed dissimilarities with several species studied in this work (e.g. *Sardina pilchardus, Scomber scombrus*)

No sequence dissimilarities were found with *Thunnus thynnus* and *Thunnus alalunga* species

- Proteins from Dressel 14 archaeological samples preserved in submarine context during two millenaries were identified
- Proteins from muscles and blood were identified
- Good protein sequence coverages were obtained allowing sequence alignment studies
- New peptides not referenced in the current databases have been identified by *de novo* sequencing (and sequence homology to referenced proteins)
- Proteins identified in the archaeological material showed sequence dissimilarities with several modern species studied in this work (e.g. Sardina pilchardus, Scomber scombrus)
- No sequence dissimilarities were identified with *Thunnus thynnus* and *Thunnus alalunga species* raising the question of the potential use of tuna in the studied amphorae.

Taxonomy and classification of Upper Pleistocene bones with ultrahigh resolution MALDI-FTICR Mass Spectrometry

Isabelle FABRIZI

Miniaturization for Synthesis, Analysis & Proteomics USR 3290

University of Lille, FST

Why

- Ancient preserved molecules give a better knowledge on the biological past
- Bones proteomic is a good alternative to replace ancient DNA analysis
- Tiny fragments are found in large numbers during paleontological excavations
- Analysis of fossils must consume a low quantity of material to avoid damaging samples
- Modifications post translationnal are markers of degradation of bones

High throughput method using FT-ICR development

Reference bones and paleontological bones from Caours and Waziers (130,000 – 110,000 years old, France) were given by Dr Patrick AUGUSTE, EEP laboratory.

AN EU FT-ICR MS

Université de Lille

Workflow optimization on 96 well plate

MALDI FT ICR : detection limit from eFASP in 96 wells plates

Bos primigenus spectra from archeological site Caours (130,000 – 110,000 years old) Resolution 2M, FID 5.0 sec, 15 accumulated spectra, laser shot: 1'30 s

Detection limit: 0.1 mg of bone Depend on bone conservation & archaeological sites

Protocol reproductibility of 96 well plate digestion

Optimum resolution $m/\Delta m$ for the identification of deamidation

Zoom of deamidation on peptide of archaeological bone spectrum

Analysis of archaeological bones from different sites

Waziers

Caours

Archaeological bones samples the Wazier site

Correlation of % desamidation and datation of different sites

Study of plant gums polysaccharide moiety by sequential enzymatic hydrolysis

Clara GRANZOTTO

Miniaturisation pour la Synthèse, l'Analyse & la Protéomique USR 3290

Université Lille, CNRS

Plant gums: applications

Plant gums are naturally occurring polysaccharide materials exuded by several species of plants or extracted from the endosperm of some seeds.

gum arabic fruit tree gums gum tragacanth

karaya gum locust bean gum ghatti and guar gum

- adhesive properties
- ability to form gels
- stabilize emulsion, foams and dispersions

Plant gums: polysaccharides classification

Plant gum	Polysaccharide family
Arabic	Type II Arabinogalactan
Ghatti	Substituted glucuronomannan
Tragacanth	Mixture of type II arabinogalactan and galacturonan type
Karaya	Substituted rhamnogalacturonan
Guar/Locust bean	Galactomannan
Fruit tree (e.g. cherry)	Substituted arabinogalactan

traditional technique: acid hydrolysis and monosaccharide composition by GC-MS.

cons: fairly limited and not specific if a mixture of polysaccharide materials is present

traditional technique: acid hydrolysis and monosaccharide composition by GC-MS.

cons: fairly limited and not specific if a mixture of polysaccharide materials is present

(1) Gum solubilization

(2) Sequential enzymatic hydrolysis

(3) clean-up

(4) MALDI TOF of release oligosaccharides

traditional technique: acid hydrolysis and monosaccharide composition by GC-MS.

cons: fairly limited and not specific if a mixture of polysaccharide materials is present

traditional technique: acid hydrolysis and monosaccharide composition by GC-MS.

cons: fairly limited and not specific if a mixture of polysaccharide materials is present

(1) Gum solubilization

(2) Sequential enzymatic hydrolysis

(3) clean-up

(4) MALDI TOF of release oligosaccharides

Nie S-P. A further amendment to the classical core structure of gum arabic (Acacia senegal). *Food Hydrocolloids* **2013**;31:42.

(1) α-L-Arabinofuranosidase

From side chains to main chain

Nie S-P. A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocolloids 2013;31:42.

(1) α-L-Arabinofuranosidase

(2) β-glucuronidase

Nie S-P. A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocolloids 2013;31:42.

Université de Lille

Université de Lille

EU FT-ICR MS

Gum Arabic: MALDI

Gum Arabic: MALDI

Gum Arabic: MALDI

_____ EU FT_ICR MS

Université de Lille

Summary

Locust Bean gum: galactomannan

(1) α-galactosidase

(2) Endo-1,4-beta-mannanase

Linear backbone of $1 \rightarrow 4$ -linked β -D-mannose units attached by a single α -D-galactose residue at C-6 of mannose with $1 \rightarrow 6$ glycosidic bonds

Locust Bean gum : MALDI

Identification of the binder of a watercolor paint

Wooden 'Colour Box Charles Roberson & Co' dating 1870s. Approximately 1 mg was sampled from the blue watercolor paint located on the left in the box MALDI-TOF MS profile of the old watercolor sample dating 1870 with the related oligosaccharide attributions. The reported ions correspond to oligosaccharides derivatized with 3-aminoquinoline.

Granzotto, C., Arslanoglu, J., Rolando, C., Tokarski, C. (2017). Plant gum identification in historic artworks. Scientific reports, 7, 1-15.

Identification of the origin of archaeological fat remains by triacylglycerols analysis using Li⁺ cationization, nanoESI ionization, high resolution MS and IRMPD

Nicolas GARNIER

Miniaturization for Synthesis, Analysis & Proteomics USR 3290

Why and how studying archaeological object contents?

- Why?
 Historical, socio-economic, cultural precisions (knowledge of trades etc.) + analytical challenge
- How?
 - Typology (origin, content)
 - Epigraphy (stamp: potter, insurer; *Tituli picti*: owner, charterer; content and quality)
 - Coating (pitch = aqueous contents)
 - Chemical analysis based on fatty acid composition*

Port Vendres II (42-50 BC) shipwreck

* Evershed R.P. Archaeometry 2008, 50, 895–924.

Colombini M.P., Modugno F., Ribechini, E. 2009 GC/MS in the Characterization of Lipids, in Organic Mass Spectrometry in Art and Archaeology, Eds M. P. Colombini and F. Modugno, John Wiley & Sons, Ltd, Chichester, UK.

Triacylglycerols analysis: example of olive oil (cationized with Li⁺)

TAGs purified on diol cartridge (elution: cyclohexane/dichloromethane/diethyl ether; 89/10/1; v/v/v)

MS spectra allow discrimination of oil origin: vegetal oils

MS/MS spectra allow discrimination of oil origin InfraRed MultiPhoton Dissociation experiments (C_{54:3} / C₅₇H₁₀₄O₆Li)

Loss of oleic acid from olive C_{54:3} versus loss of oleic, stearic, linoleic acids from sesame C_{54:3}

MS spectra allow discrimination of oil origin: dairy products and animal fats

Page • 61

Study of TAGs remains from 5th century BC– 4th century AD archaeological lamps (Olbia, Ukraina)

- Dichloromethane-methanol extraction + ultrasonic baths
- TAGs purified on diol cartridge (elution: cyclohexane dichloromethane, diethyl ether; 89/10/1)
- Strong dominance of saturated TAGs, a weak proportion of monounsaturated TAGs and few polyunsaturated TAGs (due to oxidation) in 6 analyzed lamps (9 lamps analyzed)
- Characteristic odd-C-numbered TAGs (not found in nonherbivore species) identifying ovine/bovine species

Page • 62

Garnier N., Rolando N., Høtje J.M., Tokarski C. Int. J. Mass Spectrom. 2009, 284, 47–56 Université

de Lille

Study of TAGs remains from 5th century BC– 4th century AD archaeological lamps (Olbia, Ukraina)

- MS/MS profiles allow confirming each TAGs composition
- Here the C_{52:0} TAG contains 2 stearic acid and 1 palmitic acid
- Precursor ion selection for MS/MS acquisition was made with higher Δm than Δm used for model oil analysis to increase the signal to noise

 $(\Delta m \ 2 \ ppm \ for \ standard \ oils \ versus 5 \ ppm \ for \ ancient \ samples)$

Garnier N., Rolando N., Høtje J.M., Tokarski C. Int. J. Mass Spectrom. 2009, 284, 47–56

Analysis of fresh versus naturally aged olive oils

- Low intensity peaks related to oxidation in 'fresh' commercial olive oil
- Strong dominance of oxidized TAGs in 10 years-naturally aged olive oil

Analysis of naturally aged olive oil (10 years)

C_{54:3} / C₅₇H₁₀₄O₆⁷Li C_{52:2} / C₅₆H₉₀O₆⁷Li 865.68972 891.79876 Detection of oxidation products of ∆m= 0.12 ppm $\Delta m = 0.46 \text{ ppm}$ main olive oil unsaturated TAGs C_{52:2} + O C_{52:2} + 2 O E.g., mass shift of 2 oxygen from $C_{56}H_{90}O_7^7Li \mid C_{56}H_{90}O_8^7Li$ $C_{52\cdot 2}$ TAG can be attributed to 2 881.68456 897.67928 $\Delta m= 0.37 \text{ ppm}^{||} \Delta m= 0.14 \text{ ppm}^{||}$ epoxides or hydroperoxides or a 1 combination 0.8-C_{52:2} + 4 O - H₂O C₅₆H₈₈O₉⁷Li Relative intensity 911.65875 C_{52:2} ∆m= 0.37 ppm +40C_{54:2} C_{52:2} + 4 O C₅₆H₉₀O₁₀⁷Li - 2 H₂O 0.8 C₅₆H₈₆O₈7Li 929.66939 893.64815 Relative intensity 9.0 9.0 $\Delta m = 0.33$ $\Delta m = 0.44 \text{ ppm}$ IC_{54:1} 0.2ppm C_{52:2} ۱ |C_{54:0} 900 Zoom of MS spectrum of m/z aged olive oil 0.2-* See next slide for attribution C_{50:1} 850 900 950 m/z MS spectrum of aged olive oil

Université de Lille

Analysis of naturally aged olive oil (10 years)

MS/MS (IRMPD) spectra of oxidized TAGs

Page • 67

Université

de Lille

Analysis of Roman amphorae from Pisa San Rossore harbor (Ist century BC)

+ their oxidized forms

Analysis of Roman amphorae from Pisa San Rossore harbor (Ist century BC)

Analysis of Roman amphorae from Pisa San Rossore harbor (Ist century BC)

Conclusion

Methodological developments based on MS and MS/MS profiles (IRMPD) allowed identification of archaeological triacylglycerols and their origins (from few micrograms of crushed sample)

- Study of TAGs remains from 5th century BC– 4th century AD archaeological lamps (Olbia, Ukraina) showed characteristic odd-C-numbered TAGs (not found in non-herbivore species) identifying ovine/bovine species + strong dominance of saturated TAGs
- Analysis of Ist century BC Roman amphorae from Pisa San Rossore harbor (Italy) allowed identification of olive oil using marker TAGs and their oxidized forms (potentially hydroperoxides, epoxides, epidioxides)
- Actually, studies on lipid (and protein) residues from amphorae preserved in marine context during 2 millenaries
- Collaboration with the *Département des Recherches Archéologiques Subaquatiques et Sous-Marines* (DRASSM, Marseille, France; Dr Franca Cibecchini and Dr Michel L'Hour)

Université

de Lille

Deciphering the structure of natural amber by chemical depolymerization and analysis by ultrahigh resolution FT-ICR mass spectrometry

Ziad MAHMOUD

Miniaturization for Synthesis, Analysis & Proteomics USR 3290

Amber

Resin is secreted by tree

Insect is captured inside resin

Geochemical ageing and polymerization

- Complex polymer
- Very insoluble
- Difficult to analyze
- Oldest amber: 320 million years ago
- Can contain fossilized animals or plants

Chemical composition of amber

¹³C NMR AND IR ANALYSES OF STRUCTURE, AGING AND BOTANICAL ORIGIN OF DOMINICAN AND MEXICAN AMBERS

ALAN CUNNINGHAM, IAN D. GAY*, A. C. OEHLSCHLAGER* and JEAN H. LANGENHEIM Division of Natural Sciences, University of California, Santa Cruz, CA 95064, U.S.A.: "Department of Chemistry, Simon Fraser University, Burnaby, Brittish Columbia, Canada. V5A 156

Thermal investigations of amber and copal

Michael Feist^a, Ingolf Lamprecht^{b,*}, Frank Müller^c

^a Institute of Chemistry, Humboldt University to Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany ^b Institute of Biology, Free University of Berlin, Granewaldstraße 34, D-121o5 Berlin, Germany ^c Institute of Biology, Applied Zoology, Free University of Berlin, Hadersbehener Straße 9, D-121o3 Berlin, Germany

Non-destructive analysis of amber artefacts from the prehistoric Cioclovina hoard (Romania)

E.S. Teodor^{a,1}, E.D. Teodor^{b,*}, M. Virgolici^{c,2}, M.M. Manea^c, G. Truică^b, S.C. Lițescu^b

^aRomanian National History Museum, 12 Calea Victoriei, Bucharest, 030026, Romania

^b National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest, 060031, Romania ^c Multipurpose Irradiation Facility – IRASM Department, Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN-HH, Mägurele,

407 Str. Atomistilor 077125, Romania

How to solubilize amber? How to identify cross-linking products?

Page ■ 74

Chemical composition of amber

- Amber can be classified into classes from I to V
- > Based on terpenoids formed of ring structures with isoprene (C_5H_8) units
- The formation of amber is the result of polymerization of one of its major compounds: communic acid

Cross-metathesis depolymerization of polybutadiene and polyisoprene

analytical.

pubs.acs.org/ac	Article
Regio- and Stereo-Specific Chemical Depolymerizat	tion of High

Molecular Weight Polybutadiene and Polyburation of High Analysis by High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Comparison with Pyrolysis-Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry, Atmospheric Solid Analysis Probe, Direct Inlet Probe-Atmospheric Pressure Chemical Ionization Mass Spectrometry, and Ion Mobility Spectrometry-Mass Spectrometry

Ziad Mahmoud, Fabrice Bray, Marie Hubert-Roux, Michel Sablier, Carlos Afonso, and Christian Rolando *

ABSTRACT: Polybutakiene (PB) and polyisoprene (PI), the two most common polydienes (PD), are involved in a large number of materials and used in a wide variety of applications. The characterization of these polymers by mass spectrometry (MS) continues to be very challenging due to their high insolubility and the difficulty to ionize them. In this work, a cross-metathesis reaction was used to generate end-functionalized actoxy ionizable oligomers for the structural deciphering of different commercial PB and PI samples. A cross-metathesis reaction was carried out between polymers and the Z-1,4-diacetoxy-2-butene as a chain transfer agent in dichloromethane using a Howyda–Grubbs second-

enaution calls. Well-defined actory telechelic structures were obtained and analyzed by Fourier transform ion cyclotron resonance (FFICR) high-resolution MS. However, after depolymerization, low molar mass polyolefines contained some units with different configurations, suggesting an olefin isometrization reaction due to the decomposition of the catalyst. The addition of an dectron-deficient reagent such as 2,6 dichloro-1,4-benzoquinone suppressed this isometrization in the case of both Z- and E-PB and PL Ion mobility spectrometry-mass spectrometry (IM-SNS) and energy-resolved tandem mass spectrometry (IREMS) analyses confirmed a successful isometrization suppression. For comparing the results obtained by depolymetrization with dassial methods for polymer analysis, probasis, comprehensive two-dimensional gas dromatography/mass spectrometry (IPS-GC × GC-MS), atmospheric solid analysis probe (ASAP), and direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) analyses were performed on the same polymers. This strategy can be applied on a variety of synthetic and natural not yet characterized polymers.

eceive d:

1573

June 21, 2020

Accepted: September 8, 2020 Published: September 8, 2020

ACS Publications

A EU FT-ICR MS

products to more complex applications such as plastics and medical supplies. In recent years, interest has grown dramatically in these versatile macromolecules, which increased the necessity to elucidate their structure and to follow their degradation mechanism.^{1,2}

https://dx.doi.org/10.1021/acs.an.akhem.0c02650 And. Chem. 2020, 92, 15736–15744

Extraction and analysis of communic acid

Communic acid was extracted from cypress \geq cones, purified and polymerized under UV

Analysis on SolarixXR 9.4 Tesla FT-ICR from \succ Bruker Daltonis equipped with a nanoESI ionizzation source

FT-ICR ESI(+) MS of communic acid

Extraction and analysis of communic acid

Amber samples

Page • 78

Samples provided by the National Museum of Natural History-Paris (MNHN)

- Cross-metathesis with ruthenium catalyst was performed applied on the samples
- Disulfide bridges in act as poison to the catalyst and inhibit the depolymerization reaction

Development of alternative chemical pathway for the depolymerization and analysis of amber by high-resolution mass spectrometry

MSAP

AN EU FT-ICR MS

Université de Lille

Depolymerization and analysis of amber samples

Amber polymer free of sulfur and containing isoprenic units 9.4T AS

Analysis by FT-**ICR** high resolution mass spectrometry

Raney Nickel

Desulfurization

Analysis of amber by FT-ICR MS

Analysis of amber samples by FT-ICR MS

 Amber from different regions have specific chemical composition

 Possibility to determine the fingerprint of each sample

> Université de Lille

Analysis of amber by FT-ICR MS

Depolymerized Archingeay amber

Depolymerized Baltic amber

Conclusions and perspectives

Conclusions:

- We developed a method for the analysis of natural amber based on desulfurization and depolymerization by olefin cross-metathesis using ruthenium catalysts
- Mass spectra showed the complexity of the amber after ageing and polymerization
- Analysis by high-resolution mass spectrometry revealed the fingerprint of ambers from different regions

Perspectives:

- Full characterization of products obtained from cross-linking after ageing
- Classification of amber samples according to their chemical composition
- Apply the same methodology on amber containing insects or plants

Metabolomics of archaeological samples

- Funeral amphora discovered in a Gallic site at Cébazat (Auvergne, France)
- This amphora has been used as a wine container
- Traces of cannabis were guessed from GC-MS data by Dr Nicolas Garnier

Proof of cannabis presence in the archaeological amphora by FT-ICR MS

Metabolomics of archaeological samples

ESI(-)-FT-ICR IRMPD MS/MS allows to identify exact structure: $C_{22}H_{30}O_4 = \Delta^9$ -THCA-C5 A and B $C_{22}H_{28}O_5 = \Delta^9$ -THCA A-8-one $C_{22}H_{30}O_6 = 8\beta$,11-Di-OH- Δ^9 -THCA

Proteins in Art, Archaeology, and Paleontology: From Detection to Identification

Sophie Dallongeville,[†] Nicolas Garnier,[‡] Christian Rolando,[†] and Caroline Tokarski*,[†]

[†]Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France

3

5

5

14

16

16

17

17

20

22

22

Received: January 20, 2015 Published: December 28, 2015

[‡]SARL Laboratoire Nicolas Garnier, 63270 Vic le Comte, France

CONTENTS

1. Introduction and Scope

- Detection and Localization of Proteins in Ancient Samples
- 2.1. Staining Methods for Protein Detection in Paint Cross-Sections and Fossil Samples
- 2.1.1. Paint Cross-Section Staining Using Visible Dyes
- 2.1.2. Paint Cross-Section Staining Using Fluorescent Dyes
- 2.1.3. Staining Method Applied to Fossils and Archeological Samples
- 2.2. Spectroscopic Techniques Applied to Paleontological, Archeological, and Art Samples 2.2.1. Infrared Spectroscopy and Raman Spec-
- troscopy Applied to Ancient Samples 2.2.2. Fluorescence Spectroscopy Applied to
- Paint Analysis 2.2.3. Electron Paramagnetic Resonance Ap-
- plied To Study Protein Environment and Interactions
- 2.3. Time of Flight Secondary Ion Mass Spectrometry Imaging Applied to Ancient Samples
- Protein Identification Based on Amino Acid Composition: Application to Cultural Heritage Samples
- Chromatography-Based Techniques Applied to the Study of Amino Acids in Fossils
 Analysis of Amino Acids from Artwork Using Paper Chromatography and Liquid Chroma-
- tography 3.3. Analysis of Amino Acids from Artwork Using Gas Chromatography-Based Techniques
- 3.3.1. Gas Chromatography Applied to Ancient Samples

3.3.2. Pyrolysis Gas Chromatography and Pyrolysis Gas Chromatography-Mass Spectrometry Applied to Ancient Sam-25 ples 3.4. Alternative Techniques for the Analysis of Amino Acids or Low Molecular Weight Tags for Protein or Binder Characterizations in Ancient Samples 28 3.4.1. Capillary Zone Electrophoresis Applied to the Study of Ancient Samples 28 3.4.2. Inductively Coupled Plasma Mass Spectrometry Applied to Artwork Binder Characterization 28 4. Protein Identification Based on Immunological Methods: Application to Ancient Samples 29 4.1. Gel Immuno-Based Techniques Applied to the Study of Ancient Samples: Gel Immunodiffusion, Western Blot, and Alternative Techniques 29 4.2. Radioimmunoassay for Protein Detection in Fossils and Archeological Materials 31 4.3. Enzyme Immunoassay and Enzyme Linked Immunosorbent Assay Technique for Protein Identification in Art, Archeology, and Paleontology 33 4.3.1. Enzyme Immunoassay and Enzyme Linked Immunosorbent Assay and Derived Techniques Applied to Archeological and Fossil Materials 33 4.3.2. Enzyme Linked Immunosorbent Assay Applied to Paint Media Analysis 34 4.4. Immunofluorescence Applied to Ancient Samples 36 4.5. Chemiluminescence for the Study of Ancient Samples 38 4.6. Immuno-Surface-Enhanced Raman Scattering for Painting Analysis and Related Techniques 39 4.7. Electrochemical Immunoassay Applied to 40 Artwork 5. Proteomic-Based Methodologies and Related Mass Spectrometry-Based Approaches Applied to Paleontological, Archaeological, and Artwork 42 Samples

Dallongeville, S., Garnier, N., Rolando, C., & Tokarski, C. (2016). Proteins in art, archaeology, and paleontology: from detection to identification. *Chemical reviews*, *116*(1), 2-79.

Dr Michel SABLIER Dr Martine REGERT Dr Nicolas GARNIER Dr Cécile CREN-OLIVE Dr Sigrid MIRABAUD Pr Caroline TOKARSKI

Dr Clara GRANDZOTTO Dr Sergui MANSOUR **Dr Fabrice BRAY**

Ziad MAHMOUD Isabelle FABRIZI Caterina BORDIN

